Entropic Measure of Epistemic Uncertainties in Multibody System Models by Axiomatic Design
نویسندگان
چکیده
In this paper, the use of the MaxInf Principle in real optimization problems is investigated for engineering applications, where the current design solution is actually an engineering approximation. In industrial manufacturing, multibody system simulations can be used to develop new machines and mechanisms by using virtual prototyping, where an axiomatic design can be employed to analyze the independence of elements and the complexity of connections forming a general mechanical system. In the classic theories of Fisher and Wiener-Shannon, the idea of information is a measure of only probabilistic and repetitive events. However, this idea is broader than the probability alone field. Thus, the Wiener-Shannon’s axioms can be extended to non-probabilistic events and it is possible to introduce a theory of information for non-repetitive events as a measure of the reliability of data for complex mechanical systems. To this end, one can devise engineering solutions consistent with the values of the design constraints analyzing the complexity of the relation matrix and using the idea of information in the metric space. The final solution gives the entropic measure of epistemic uncertainties which can be used in multibody system models, analyzed with an axiomatic design.
منابع مشابه
Modeling Multibody Dynamic Systems With Uncertainties. Part I: Theoretical and Computational Aspects
This study explores the use of generalized polynomial chaos theory for modeling complex nonlinear multibody dynamic systems in the presence of parametric and external uncertainty. The polynomial chaos framework has been chosen because it offers an efficient computational approach for the large, nonlinear multibody models of engineering systems of interest, where the number of uncertain paramete...
متن کاملConsidering the Epistemic Uncertainties of the Variogram Model in Locating Additional Exploratory Drillholes
To enhance the certainty of the grade block model, it is necessary to increase the number of exploratory drillholes and collect more data from the deposit. The inputs of the process of locating these additional drillholes include the variogram model parameters, locations of the samples taken from the initial drillholes, and the geological block model. The uncertainties of these inputs will lead...
متن کاملSpecial Workshop on Risk Acceptance and Risk Communication Aleatory or Epistemic? Does It Matter?
The sources and characterization of uncertainties in engineering modeling for risk and reliability analyses are discussed. While many sources of uncertainty may exist, they are generally categorized as either aleatory or epistemic. Uncertainties are characterized as epistemic, if the modeler sees a possibility to reduce them by gathering more data or by refining models. Uncertainties are catego...
متن کاملIntegration of Possibility-Based Optimization to Robust Design for Epistemic Uncertainty
1. Abstract In practical engineering applications, there exist two different types of uncertainties: aleatory and epistemic uncertainties. Aleatory uncertainty is classified as objective and irreducible uncertainty with sufficient information on input uncertainty data, whereas epistemic uncertainty is a subjective and reducible uncertainty that stems from lack of knowledge on input uncertainty ...
متن کاملRobust Stability for Multiple Model Adaptive Control: Part I - The Framework
An axiomatic framework providing robust stability and performance bounds for a wide class of Estimation based Multiple Model Switched Adaptive Control (EMMSAC) algorithms is developed. The approach decouples development of both the atomic control designs and the estimation processes thus permitting the usage of standard controller design and optimisation approaches for these components. The fra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Entropy
دوره 19 شماره
صفحات -
تاریخ انتشار 2017